
2/10/24, 3:38 AM </> htmx ~ Locality of Behaviour (LoB)

https://htmx.org/essays/locality-of-behaviour/ 1/4

</> htmx docs reference examples talk essays 🔍️ Star

Locality of Behaviour (LoB)
Carson Gross

May 29, 2020

“The primary feature for easy maintenance is locality: Locality is that

characteristic of source code that enables a programmer to understand that

source by looking at only a small portion of it.” – Richard Gabriel

The LoB Principle

Locality of Behaviour is the principle that:

The behaviour of a unit of code should be as obvious as possible by looking

only at that unit of code

Discussion

The LoB principle is a simple prescriptive formulation of the quoted statement from

Richard Gabriel. In as much as it is possible, and in balance with other concerns,

developers should strive to make the behaviour of a code element obvious on

inspection.

Consider two different implementations of an AJAX request in HTML, the first in

htmx:

<button hx-get="/clicked">Click Me</button>

and the second in jQuery:

 $("#d1").on("click", function(){
 $.ajax({
 /* AJAX options... */
 });
 });

<button id="d1">Click Me</button>

#

#

https://htmx.org/
https://htmx.org/
https://htmx.org/
https://htmx.org/
https://htmx.org/docs/
https://htmx.org/reference/
https://htmx.org/examples/
https://htmx.org/talk/
https://htmx.org/essays/
https://github.com/bigskysoftware/htmx
https://www.dreamsongs.com/Files/PatternsOfSoftware.pdf
https://www.dreamsongs.com/
https://htmx.org/
https://jquery.com/

2/10/24, 3:38 AM </> htmx ~ Locality of Behaviour (LoB)

https://htmx.org/essays/locality-of-behaviour/ 2/4

In the former, the behaviour of the button element is obvious on inspection,

satisfying the LoB principle.

In the latter, the behaviour of the button element is spread out amongst multiple

files. It is difficult to know exactly what the button does without a total knowledge

of the code base. This “spooky action at a distance” is a source of maintenance issues

and stands in the way of developers understanding of the code base.

The htmx example demonstrates good Locality of Behaviour, while the jQuery

example has poor Locality of Behaviour.

Surfacing Behaviour vs. Inlining Implementation

A common objection to Locality of Behaviour is that it is inlining implementation

details within a code unit, making the code unit less abstract and more brittle.

However, it is important to make the distinction between inlining the implementation

of some behaviour and inlining the invocation (or declaration) of some behaviour.

Consider functions in most programming languages: there is a distinction between

the declaration of function and its use at call sites. A good function abstracts away its

implementation details, but is also invoked in an obvious manner, without any spooky

action at a distance.

Increasing the obviousness of the behaviour of an element is, ceteris paribus, a good

thing, but it falls to both end-developers and especially framework developers to

make LoB both as easy and as conceptually clean as possible.

Conflict With Other Development Principles

The LoB will often conflict with other software development principles. Two

important ones are:

DRY - Don’t Repeat Yourself

Software developers typically strive to avoid redundancy in their code or data.

This has come to be called “Staying DRY”, i.e. Don’t Repeat Yourself. Like other

software design principles this, on its own, is a good thing. htmx, for example,

allows you to place many attributes on parent elements in a DOM and avoid

repeating these attributes on children. This is a violation of LoB, in favor of DRY,

and such tradeoffs need to be made judiciously by developers.

Note that the further behaviour gets from the code unit it effects, the more

severe the violation of LoB. If it is within a few lines of the code unit, this is less

serious than if it is a page away, which is less serious than if it is in a separate file

entirely.

#

#

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

2/10/24, 3:38 AM </> htmx ~ Locality of Behaviour (LoB)

https://htmx.org/essays/locality-of-behaviour/ 3/4

There is no hard and fast rule, but rather subjective tradeoffs that must be

made as software developers.

SoC - Separation Of Concerns

Separation of concerns a design principle for separating a computer program

into distinct sections such that each section addresses a separate concern. A

canonical example of this is splitting HTML, CSS, and Javascript. Again, on its

own and in isolation this may, indeed, be a good thing. Inlining styles has

become more prevalent lately, but there are still strong arguments in favor of

SoC in this regard.

Note that SoC is, however, in conflict with LoB. By tweaking a CSS file the look

and, to an extent, behaviour of an element can change dramatically, and it is not

obvious where this dramatic change came from. Tools can help to an extent

here, but there is still “spooky action at a distance” going on.

Again, this isn’t to condemn SoC wholesale, just to say that there are subjective

tradeoffs that must be made when considering how to structure your code. The

fact that inline styles have become more prevalent as of late is an indication

that SoC is losing some support amongst developers.

Conclusion

LoB is a subjective software design principle that can help make a code base more

humane and maintainable. It must be traded off against other design principles and

be considered in terms of the limitations of the system a code unit is written in, but,

as much as is it is practical, adherence to this principle will increase your software

maintainability, quality and sustainability.

</>

haiku docs

#

https://en.wikipedia.org/wiki/Separation_of_concerns
https://tailwindcss.com/
https://tailwindcss.com/
https://htmx.org/docs/

2/10/24, 3:38 AM </> htmx ~ Locality of Behaviour (LoB)

https://htmx.org/essays/locality-of-behaviour/ 4/4

javascript fatigue:

longing for a hypertext

already in hand

reference

examples

talk

essays

@htmx_org

https://htmx.org/reference/
https://htmx.org/examples/
https://htmx.org/talk/
https://htmx.org/essays/
https://twitter.com/htmx_org

